Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The transport of protons is critical in a variety of bio- and electro-chemical processes and technologies. The Grotthuss mechanism is considered to be the most efficient proton transport mechanism, generally implying a transfer of protons between ‘chains’ of host molecules via elementary reactions within the hydrogen bonds. Although Grotthuss proposed this concept more than 200 years ago, only indirect experimental evidence of the mechanism has been observed. Here we report the first experimental observation of proton transfer between the molecules in pure and 85% aqueous phosphoric acid. Employing dielectric spectroscopy, quasielastic neutron, and light scattering, and ab initio molecular dynamic simulations we determined that protons move by surprisingly short jumps of only ~0.5–0.7 Å, much smaller than the typical ion jump length in ionic liquids. Our analysis confirms the existence of correlations in these proton jumps. However, these correlations actually reduce the conductivity, in contrast to a desirable enhancement, as is usually assumed by a Grotthuss mechanism. Furthermore, our analysis suggests that the expected Grotthuss-like enhancement of conductivity cannot be realized in bulk liquids where ionic correlations always decrease conductivity.more » « less
- 
            Phospholipid bilayers can be described as capacitors whose capacitance per unit area (specific capacitance, Cm) is determined by their thickness and dielectric constant–independent of applied voltage. It is also widely assumed that the Cm of membranes can be treated as a “biological constant”. Recently, using droplet interface bilayers (DIBs), it was shown that zwitterionic phosphatidylcholine (PC) lipid bilayers can act as voltage-dependent, nonlinear memory capacitors, or memcapacitors. When exposed to an electrical “training” stimulation protocol, capacitive energy storage in lipid membranes was enhanced in the form of long-term potentiation (LTP), which enables biological learning and long-term memory. LTP was the result of membrane restructuring and the progressive asymmetric distribution of ions across the lipid bilayer during training, which is analogous, for example, to exponential capacitive energy harvesting from self-powered nanogenerators. Here, we describe how LTP could be produced from a membrane that is continuously pumped into a nonequilibrium steady state, altering its dielectric properties. During this time, the membrane undergoes static and dynamic changes that are fed back to the system’s potential energy, ultimately resulting in a membrane whose modified molecular structure supports long-term memory storage and LTP. Here, we also show that LTP is very sensitive to different salts (KCl, NaCl, LiCl, and TmCl3), with LiCl and TmCl3 having the most profound effect in depressing LTP, relative to KCl. This effect is related to how the different cations interact with the bilayer zwitterionic PC lipid headgroups primarily through electric-field-induced changes to the statistically averaged orientations of water dipoles at the bilayer headgroup interface.more » « less
- 
            Sulfide solid-state electrolyte (SE) possesses high room-temperature ionic conductivity. However, fabrication of the free-standing, sheet-type thin sulfide SE film electrolyte to enable all-solid-state batteries to deliver high energy and power density remains challenging. Herein we show that argyrodite sulfide (Li6PS5Cl) SE can be slurry cast to form free-standing films with low (≤5 wt%) loadings of poly(isobutylene) (PIB) binder. Two factors contribute to a lower areal specific resistance (ASR) of the thin film SEs benchmarked to the pristine powder pellet SSE counterparts: i) 1–2 orders reduced thickness and ii) reasonably comparable ionic conductivity at room temperature after the isostatic pressing process. Nevertheless, an increasing polymer binder loading inevitably introduced voids in the thin film SEs, compromising anode/electrolyte interfacial ion transport. Our findings highlight that electrolyte/electrode interfacial stability, as well as the selection of slurry components, including sulfide SE, binder, and solvent, play essential roles in thin film sulfide electrolyte development.more » « less
- 
            Biological supramolecular assemblies, such as phospholipid bilayer membranes, have been used to demonstrate signal processing via short-term synaptic plasticity (STP) in the form of paired pulse facilitation and depression, emulating the brain’s efficiency and flexible cognitive capabilities. However, STP memory in lipid bilayers is volatile and cannot be stored or accessed over relevant periods of time, a key requirement for learning. Using droplet interface bilayers (DIBs) composed of lipids, water and hexadecane, and an electrical stimulation training protocol featuring repetitive sinusoidal voltage cycling, we show that DIBs displaying memcapacitive properties can also exhibit persistent synaptic plasticity in the form of long-term potentiation (LTP) associated with capacitive energy storage in the phospholipid bilayer. The time scales for the physical changes associated with the LTP range between minutes and hours, and are substantially longer than previous STP studies, where stored energy dissipated after only a few seconds. STP behavior is the result of reversible changes in bilayer area and thickness. On the other hand, LTP is the result of additional molecular and structural changes to the zwitterionic lipid headgroups and the dielectric properties of the lipid bilayer that result from the buildup of an increasingly asymmetric charge distribution at the bilayer interfaces.more » « less
- 
            A fundamental understanding of acidity at an interface, as mediated by structure and molecule–surface interactions, is essential to elucidate the mechanisms of a range of chemical transformations. While the strength of an acid in homogeneous gas and solution phases is conceptually well understood, acid–base chemistry at heterogeneous interfaces is notoriously more complicated. Using density functional theory and nonlinear vibrational spectroscopy, we present a method to determine the interfacial Brønsted–Lowry acidity of aliphatic alcohols adsorbed on the (100) surface of the model perovskite, strontium titanate. While shorter and less branched alkanols are known to be less acidic in the gas phase and more acidic in solution, here we show that shorter alcohols are less acidic whereas less substituted alkanols are more acidic at the gas–oxide interface. Hydrogen bonding plays a critical role in defining acidity, whereas structure–acidity relationships are dominated by van der Waals interactions between the alcohol and the surface.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
